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épstraqg

Second order rigid flapping response statistics of lifting
rotor blades are obtained by efficient algorithms developed
in this paper. These statistics enable us to analyze the
effect of a finite load correlation length on the blade response.
For our particular loading (typical of turbulence excitations)
and for an advance ratio small compared to unity, this effect

can be concisely expressed in terms of an amplitude factor

and a phase factor. 1In the case of a blade excited by a

random vertical inflow with a spanwise correlation length of
the order of the blade length, the amplitude factor shows that
there may be as much as a 40% error in a solution which assumes
the inflow is spatially uniform. The analytical development

leading to the algorithms also illustrates how a spatial

correlation method for general linear PDE with random forcing
previously formulated by the author ﬁay be used in conjunction

with a Ritz-Galerkin procedure.
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wi(x,1)

A(x,T)

Rs(x,y)
n(X,T)

u,s,t,v

52

P,d,0,d
¢ (1)
v,s,T,Vv
k,c

P,9,P,Q
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‘Nomenclature

dimensionless transverse displacement of the blade
blade length

Lock number

= v/6

uniform rotating speed of the blade

constant forward velocity of vehicle-blade system
advance ratio (= Vf/QZ)

dimensionless stiffness factor (= EI/m£492)
linear mass density of the blade

inflow ratio

dimensionless correlation time (see eq.(3))

spatial part of the autocorrelation of the loading
(see eq.(3))

a temporally delta correlated random process
(see eq.(4))

spatial correlation functions (see eq. (6))
autocorrelation of w(x,T)

dimensionless correlation length of loading
(see eqg.(28))

a positive constant (see eq.(28))

see eq.(9), (10), (12) and (13)

flapping angle of the blade

see eq.(18) (meansquare flapping angle, etc.)

the spring force and damping parameter (see eq. (20))

see eq.(19), (21) and (22)




"Vi‘
F(%x,7) see eq.(23) and (24)
§s,§s steady state solution of p and g
PS,QS see eq. (32)
0,5,V steady state solution of U, S and V
p(e),v(€) amplitude and phase factor (see eq.(32) and (47))
in the steady state response to random inflow
A see eq. (31)
Uy Vo U and V with € = 0
(g ( ) for a random change in collective pitch 6(x,T)
AMx,T;y,t) = <A(x,T)wl(y,t)>
A see eq. (57)
R(T;T") = <p(T)p(1')>
P see eq. (60)




Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

-vii-

Caption for Figures

Schematic diagram of a rotor blade

Amplitude and phase

Meansquare flapping

Meansquare flapping

Meansquare flapping

Meansquare flapping

factor

angle (p=1.0)

velocity (u=1.0)

angle (u=1l.6)

velocity (u=1.6)




’l el ’ m: - . SR g e bt

l. Introduction

The dynamics of flexible lifting rotor blades in forward
flight (Fig.l) is complicated by the fact that the aerodynamic 1lift
acting on the blade changes significantly in the course of each
blade revolution. Even an analysis of the small amplitude motion
of such a structure must cope with problems such as parametric
excitation associated with the periodically time-varying system
parameters which characterize the aerodynamic damping and spring
force effects. In one nodel for the forced small transverse
vibration of a single blade, the dimensionless transverse displace-
ment w(x,T) (normalized by the blade length &) is governed by
the rather formidable (dimensionless) partial differential

equation [1,2,9]

Wi Yolx+usinr]wT + L [w] = f(x,1) (0<x<1l, t>0) (1)

with

byt I o= c4[ | O %(l-xz)[ Ve > (X+Y0uCOSTIX+usian)[ b

(2)

where Yy = 6Y0 is the Lock number characterizing the aerodynanmic

effect, u 1is the advance ratio (the ratio of the forward speed

of the vehicle, Vf, to the rotating speed at the blade tip, Q2&),
x 1is the distance from the axis of rotation along the blade span
normalized by the blade length, and 1/Q is the real time. The
effective bending stiffness factor of the blade, c4, is related

to the bending stiffness of the uniform blade, EI, by the relation

C4 = EI/ml492, where m is the linear mass density of the blade.

adans T— — -ﬂaaﬂﬂiﬂﬁﬁ;ﬁﬂﬁﬁ;ﬁﬂﬂ“




When the source of external excitation is a vertical inflow, we
have f(x,1) = y0|x+psin1|x(x,1) where A is the so-called

inflow ratio. The temporally periodic coefficients in the PDE (1)

give rise to the possibility of parametric excitation and dynamic
instability (see [l] and references therein).

Aside from the various stability analyses, there is also
the problem of the effect of random air and rotor generated
turbulence on the structural integrity of the blade. In an
effort to understand this aspect of the rotor blade problen,
several recent papers studied the stochastic blade response to
a (zero mean) ranaom inflow with known statistics (see [2] and
references given therein). Because of the time-varying coefficients
in (1), the steady state response process w(x,1) will be
temporally nonstationary even if A(x,t) 1s stationary. In spite
of the substantial reduction (by at least an order of magnitude)

in machine computation made possible by a new method of solution

developed in [3] and used in [2], i* is still rather expensive
to generate useful information on the stochastic properties of %
the nonstationary steady state response of the flexible blade
for design purpose.
If the inflow is uniform along the blade span so that A(x,t)
is independent of x, one may expect that the dominant motion of
a blade hinged at the axis of rotation is in the form of rigid
flapping. A solution of the stochastic forced transverse vibra-

tion problem for a spanwise uniform loading based on a rigid flap-

ping blade model is considerably simpler than a more general

flexible blade analysis as far as the amount of required machine




computation is concerned (see (4] and [5]). Inasmuch as the
stochastic loadings experienced by rotor blades are often random
functions of both space and time, a rigid flapping solution for
(zero mean) spanwise correlated random loads of comparable
@ simplicity should be of interest (as pointed out in [4]). Such
a solution and the string solution (c4 = 0) of [2] together
delimit the range of the solution for any flexible blade with
finite bending stiffness (0 < ¢? < »). With the help of the
spatial correlation method of [3], we can now formulate an
efficient computational procedure to obtain such a rigid flapping
solution for a spanwise correlated random excitation containing
as a special case the solution of [4] and [5] for spanwise uniform
inflows. While our results constitute a step toward a better

understanding of rotor blade behavior under random excitation,

the analytical development leading to these results also illus-

trates how the general spatial correlation method may be used in

conjunction with a Ritz-Galerkin procedure.
For the purpose of illustrating our method of solution, we
take ) (x,t) to be of zero mean and exponentially correlated

in time with an autocorrelation function

-a|12~rl|
<A(x2,12)x(xl,rl)> = e Rs(xz,xl) (3)
where <...> 1is the ensemble averaginc¢ operation, a is a known
positive constant and Rg(x,,x4) = Rg(x,,X,) is a given function.
Rs(xl,xz) was taken to be a positive constant 02 for the case

of a random inflow due to high altitude air turbulence in ([4].

po— VAR s ey = T o e : ‘ /"‘WJ
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Since equation (1) is linear (so are
boundary conditions), w(x,t) 1is also
fore concentrate on the second order
characterized by the autocorrelation

= <w(x2,r2)w(xl,rl)>. To determine

the associated initial and

of zero mean and we can there-
response statistics of w(x,t)
function R(xz,rz;xl,rl)

R(x2,72;xl,rl), we will con-

sider X (x,T) to be the steady state stationary response to a

temporally uncorrelated random excitation n(x,t) of a dynamical

system characterized by the first order ODE

A_ + o)X = Y2a n(x,T)

T

where <n(x2,12)n(xl,rl)> = Rs(xz,xl)d(rz—rl).

(see [2,3])

(4)

It 1s mot difficult

te verify that the autocorrelation function of the steady state

solution of (4) is as given by the right hand side of (3)[2].

Furthermore,
<n(y,t')w(x,t)> =

and

for all t' > 1 >0

be given in this paper will be for the special case

2

= 0“exp(-€|x-y|) where o2 > 0 and

it can be shown [2] that
<n(y,T')wT(x,T)> =0

0 < x,y < 1.

(5)

The numerical results to
RS(X,Y)

€ > 0 are given constants.

The analytical and numerical results for the rigid flapping

solution obtained with the help of the above device allow us to

study the effect of a finite load-correlation length characterized

by the dimensionless number €
to

blade response.

In the low advance ratio range, u3

(with the correlation length equal

£/e) on the second order statistics of the (zero mean) flapping

<< 1, a pertur=-

bation solution shows that the effect of the correlation length may

be completely described by an amplitude factor

p and a phase factor

v; both facteors are simple functions

of ¢e. In the case of a random

A i




vertical inflow with a correlation length of the order of the blade

length (e = 0(1l)), we see from the expression for p(e) that the

discrepancy between our solution and one ignoring the finite spatial
load-correlation (as in [4] and [5]) may be as much as 40% of the
former. In the high advance ratio range, an efficient numerical

solution procedure is formulated for the second order statistics

E of the periodic steady state flapping blade response. The numeri-
cal solution obtained by this efficient procedure shows that the

effect of a finite load-correlation length (0 < g€ < =) is

qualitatively similar to that described by the amplitude and |

phase factor for the low advance ratio case.

2. Spatial Correlation Functions for Flexible Blade Response

The essential feature of the spatial correlation method for the
second order response statistics proposed in [3] and used in [2] and
[6] is the formulation of a nonstochastic mixed initial-boundary
value problem for the four unknown spatial correlation functions of

the response process w(x,T):

]

<w(x,t)wly,t)>, s(x,y,t)

u(x,y,t) <W(x,1)wr(y.r)>

(6)

t(x,y,1) = <w (x,)wly,1)>, vix,y,1) = <w (x,T)w_(y,1)

for all 0 < x,y <1 and Tt > 0. Note that these spatial correlation
functions contain the meansquare response properties as special cases

(when y=x). As we shall see, they also serve as the initial condi-

tions for a nonstochastic mixed initial boundary value problem for
the determination of the autocorrelation function R(xz,rz;xl,rl),
(section 7).

To obtain an appropriate set of equations for u, s, t and v,




e

Gl
we observe that
u - <wT(x,r)w(y,r)> * <w(x,r)wr(y,r)> =t + s (7)
and
t, = vix,y, 1) + o (X Tw(y,T)> (8)

| where we have made use of the fact that, within the framework of
meansquare convergence, differentiation corumutes with the ensemble
averaging operation. We now use equation (1) to eliminate -
from (8) so that

L B TS yolx+usinrlt + p(x,y,1) (9)
where
pix,y,1) = yolx+psinr]<A(x,T)w(y,T)>
(10)
= yo|x+psinrlp(x,y,1)
Interchange the role of x and y and we have also
S, =V - LYT[u] - Yo|y+usinrls + Ply,x,1) (11)

Finally, similar manipulations applied to the expression for

v. give

Wy e lac /i) = LyT[t] - Yo(|x+usinr|+|y+usinrl)v + §(x,y,1)
(12)

where
Qlx,y,7) = vy lx+usint|q(x,y,1) + Yoly+usint|q(y,x, 1) (13)

with q(x,y,t) = <A(x,r)wT(y,r)>.




Equations (7), (9), (11) and (12) are to be satisfied in the
interior of the semi-infinite unit square column (0<x,y<l), T1>0)
in the x,y,t-space. On the base square of the column, 1 = 0, we

have from the condition of no initial transverse motion:

u(x,y,0) = s(x,y,0) = t(x,y,0) = v(x,y,0) =0 (14)

We will not be concerned with the appropriate boundary conditions

on the four walls of the column (given in [6]) as they do not

RV i I o s

enter into our analysis of blade flapping.
The four equations (7), (9), (11) and (1l2) contain six unknowns
since p(x,y.t) and q(x,y,Tt) involve the unknown w(x,1). We

need two more equations to complete the system. To get these, we

observe that

pT(x,y,r) = <AT(x,T)w(y,t)> + <k(x,1)wT(y,T)>
(15)
= - ap(x,y,t) + 9(x,y,7)
and
9y %Y, T) = <A (x,Tw {y,T)> + <Aix,T)w_ (¥,1)>
= - (a+Ao|y+usinT|)q(x,y,T) - LYT[p(x,y,T)]
+ Yo lytusint|Rg (x,y) (16)
where we have made use of the PDE (l) to eliminate w the ODE (4)

TT"”
to eliminate AT, and the conditions (5) to simplify the resulting

equations. The initial conditions

p(x,y,0) = q(x,y,0) =0 (0<x,y<1) (17)

T ———— TN A
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supplementing (15) and (16) follow from the fact that the blade
experiences no transverse (out of the rotor plane) motion up to

some reference time 1t = 0. Again, we need not give here the specific
boundary conditions for p and g at y = 0 and y = 1, other than

noting the fact that they involve only two unknowns, p and gq. As
such, we can first solve (15) and (16) for p and g in the y,T-space
with X as a parameter, and then use the result in (7), (9), (11)

and (12) for the determination of the other four unknowns. We note
also that the spatial correlation of the loading, characterized

by Rs(x,y), enters into the analysis explicitly only through its

appearance on the right side of (16).

3. The Rigid Flapping HMotion

We now introduce the rigid flapping assumption by taking

w(x,t) = x¢(1), so that

xyS (1)

u(x,y,t) = xyu(t), s(x,y,T)
(18)

t(x,y,7) xyT (1), vix,y,T) xyV (T)

where U(T) = <¢2(1)>, etc., and equations(7), (9), (11) and (12)

become four ODE:

U=T+S
T =V - [wP+k(1)]U - c(1)T + P (1)
§ =V - [wP+k(1)]U - c(1)S + P(1) (19)
V = = [wP+k(T)] (8+T) - 2c(1)V + 2Q(1)
where




1
k() = 3Y0uCOST f | x+psint | xdx
0

1l (20)
c(t) = 3y0 J |x+psinr|x2dx
0
and
l -
{P(1),Q(1)} = 3Yq I x|x+usint|{p(x,1),9(x,7) }dx (21)
0
with
5 i1 1l
{p(X,T),q(X:T)} = 3[ Y{P(prIT)rq(XIYIT)}dY (22)
0

The constant wz is equal to 1 if the blade is hinged at the

l blade root and is greater than unity if there is an elastic root

restraint.

The quantities p(x,t) and qg(x,t) are determined by

P, = - ab +d, a4, = -lorc(1)1g - loP+k(T)1p + T(x,7)  (23)
p(x,0) = q(x,0) = 0 (24)
where
” 1
r(x,t) = 3y, J y|y+usinT|Rs(x,y)dy (25)
0

Equations (23) are obtained from (15) and (16) by multiplying
through by 3Y0y and integrating over the interval (0,1).
The general procedure is to sclve the initial value problem
(23) and (24) with x as a parameter. The results are to be
used in the integrals on the right side of equations (21) and the
\ integrals evaluated to give P(t) and Q(t1). Having P and Q,

we can then solve the four equations (19) subject to the initial

Lw SO o s e L85 S5 i AN St i
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conditions

u(o) = s(0) = T(0) = Vv(0) =0

(26)

which follow from (14). We note however that the second and

third equation of (19) together with

S(0) =

T(0) =

0 imply

S(t) = T(t) for all t (consistent with the fact S = <¢¢> = T).

Therefore, the system (19) is effectively a system of three equations

O =328, §=V - [0%kt)]U - elz}8 + P

(27)

Y, —2[w2+k(1)]s - 2c(T1)V + 2Q

The damping coefficients c¢(t) and the supplementary spring
rate k(t) due to the aerodynamic lift have been calculated in
[9]. In the case where X 1is independent of x, we have
Rs(x;y) = 02 (a positive constant); the corresponding
r(x,t) = r(1) reduces to the envelope function for the inflow

ratio term given in [9].

4. Exponential Correlation in Space— Hovering

In the remaining sections of this paper, we restrict ourselves

to a special class of load spatial correlation function

Rg(x,y) = o2e-€ %=yl (28)

where 02>0 and €>0 are known constants. We will be interested
in how the rigid blade solutions obtained in [4], [5] and [7] for
a spatially pniform random excitation are modified by a finite

load correlation length. 1In this section, we consider first the
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simpler case of hovering.

With u = 0, equations (23) become

P, =-ap+d, a =-(a+§P3-wp+r (29)
where
1
r = 3Y002 J yze_clx—YIdy
2 (30)
2 .2, 2.4 2 -ex .2 2
= I-‘1-5[2x +e X X e X x ec(x—l)(l+e+ %T)] :
€
- 1
Since r is independent of 1, the steady state solution of (29),
denoted by Es and is, is also independent of T and can be
obtained simply by setting pT = aT = 0. The resulting algebraic
equations give
B =T(x)/b, G = ap 8= w> + a’ + ay/8 (31)
Py v qs Pg w Y
Correspondingly, we have from (21)
1 2- 202
ps - 3Y0 J X ps(x)dx = %EK— p(e)
0 (32) L
2 3 4 5
Q = op, , ole) = L2 (e (her &) - (- &+ & - 5p)]
€

which are also independent of 1. It follows that the steady state
solution of (27), denoted by U ¢ S and V , is also independent

of 1. By setting UT = VT = ST = 0, we have immediately from (27)

2
- _ Ba - 20Y0 =
v 2 Py 94 p(e) = Vop(s)

2 -
U =ugele) = Y9 (8a7Y) 5(ey , B

36Aw

(33)

]
o
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Note that V, and Uy are independent of € and are in fact

0
the meansquare velocity and displacement known for the case
of a spanwise uniform random inflow with the same exponential time-

correlation [4,5,7]. The factor p(e) in (32) and (33) may there-

fore be thought of as an amplitude factor associated with a finite

spanwise correlation length of the inflow. It is not difficult to
verify that p(e) * 1 and p'(e) < 0 as € * 0 so that \7/v0
and U/U0 decrease with increasing € for small €. A small but
positive € means a finite correlation length which is long compared
to the blade length. On the other hand, p(c) + 0 and % €p(e) + 9/5
as € * «, so that the solution tends to that of a spatially delta-
correlated inflow. The variation of the amplitude factor p(€) over
the whole range of € 1is given in Figure 2 where we have plotted
ep(e)/2 for all € > 2 in order to compare with the limiting case
of spanwise delta-correlated inflow. The plot shows that p is
a monotone decreasing function as € increases. Therefore, the
meansquare flapping displacement and velocity decrease with decreas-
ing spanwise correlation length of the particular class of inflows.
For blades in hover, the problem with a random inflow excita-
tion is a rather artificial one; an excitation due to a randomly
changing collective pitch angle 6(x,T) is more appropriate. For

this case, we have f(x,T) = Yolx+usint|26(x,t). If 0(x,t) is

exponentially correlated both in space and time (as given by (3) and

(28)), similar calculations for u = 0 give

2 2
o . 2ayo = _ Yo (8at+y) E =
Ve 164 De(c)p Ugy 1—;:;;71— Oe(E)p Se 0 (34)

where
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(35)
"Cl+g+§_2.+.€.3_)]
~e | 7 R
and where 4 is as given in (31). The variation of Po with ¢ is

also shown in Figure 2. With Oe(c) + 1 as € + 0, the results in

(34) tend to those for a spanwise uniform ¢ obtained in [7]. As

& * w9 pe(e) tends to zero while %epe(e) tends to 16/7 corresponding
to the case Rs(x,y) = azé(x—y). For finite values of ¢, pe(e)

is again a monotone decreasing function as ¢ increases. Therefore,
the meansquare flapping displacement and velocity are also reduced

by a shortening of the spanwise correlation length of this particular
class of 6 (x,T1).

Before leaving the hovering case, it should be noted that the
quantities VO and Uo (for both kinds of random excitations consider-
ed) are monotone increasing functions of y for all y > 0 and for all
positive values of w2 and q. In the realistic range of y and wz,

V0 increases almost linearly with y while U0 increases quadratically
with v for a = 0(1) and is nearly linear in y only for broad band

excitations (a >> 1).

5. Forward Flight at Moderate Advance Ratios

While an exact elementary solution of our problem was obtained
in section (4) for the hover case (u=0), the same is not possible
for the forward flight case (u>0). To gain some insight into the
effect of a spanwise correlation of the inflow, we restrict ourselves

3 €< 1. In

in this section to the low advance ratio range so that u
this range, we expect that the contribution of the reverse flow ef-

fect can be neglected (see [4.8]) so that

1
c(t) = 3yo J (x3+x2usinr)dx = % + % usin = cn(r) (CONTINULD)
0




-] 4=

1
kit) & 3yopcosr I (x2+xusin1)dx
0
= %ucosr + %uzsinZT z kn(T)
1 (36)
r(x,t) = 3Y002 f (y2+yusint)e—€|x-YIdy
0
= 02 [r,(x)+r. (x}usint] = r_ (x,T1)
Y1y Rt T gy hea
where
ry(x) = 5-3[2+52x2—e-6x~e~€(1_x)(l+€+ %ez)]
o _ > i (37)
rl(x) = %e 2[2e:x+e 4 0 e(l k)(l+e)]
The form of cn(r), kn(T) and rn(x,r) suggests that
a steady state solution of (15) and (16) in powers of u is
*
possible when u < 1. Upon writing
{p.q} = } {p, (x,1),q, (x,7) Ju (38)

n=0
the coefficients Py and . %% (which are independent of u) are
evidently the particular solutions of the following sequence of

ODE:

Py t 2c0p0 + Apo = Yro(x) » 4y = Py + apg, (39a)

pi + 2copi + Apl = yrl(x)sinr - %sintpa - %(usinr+cosr)p0
(39b)

o s Tl

* I
A perturbation solution of the initial value problem (15)-(17) it- i
self can be obtained without difficulty. But we are not interested
here in the transient part of the meansquare response properties.
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where dots indicate differentiation with respect to 1, A is
as defined in (31) and Cp = at Yy/16. It is a straightforward
matter to obtain these particular solutions since the ODE involved

are with constant coefficients.

The steady state perturbation solutions (3€) are then inserted

into (21) with the reverse flow effect neglected. Upon carrying

out the integration, we get

2 2
P(1) = 23%5 p(s){l+u[PSO+Pslv(e)]sint
' + u[PcO+PClv(s)]cost ok O(uz)}
2 2 (40)
(1) = gg%K p(s){a+u[QSO+QSlv(e)]sin1

+ p[PcO+Pclv(e)]cosr + O(uz)}

where p(e) 1is as given in (32) and

2
€

pledvie) = S5l (l-e+sm)-e™"
€

: ] (41)

The constants P_., P _., Qsj and ch depend only on y, o and wz

sJ 3
and will not be listed here. Therefore, the effect of the span-
wise correlation is completely described by the quantities p(g)
and v(e). Note that wv(e) -+ 1 as € =+ 0.

Having the steady state solution for P(t) and Qf(71), we
can now use (27) to determine the steady state meansquare proper-

ties of the blade response. In view of (40), a steady state solu-

tion of (27) may be taken in the form

{u,s,v} = (0,S,V} + u[{Us,ss,vs}sim

2 (42)
+ {UC,SC,VC}COST] + 0(pu%)

s
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The 0(l) terms, U, £ and V, are just the steady state solutions
for the hover case given by (33). DBy the method of undetermined

coefficients, the constants Us, T ot o VC are solutions of a

S

system of six coupled linear algebraic equations which may be

written as two sets of three complex equations

(1 + YV + W'y = 2i8 ~ Xiv

3
(43)
= 2__]_.___‘{_.7__'- =
-V + (w 5 lsl)b-—P+%J.U
U - 2i§ = 0 (44)
with
{0,8,<:0) = U, s 0ena@ ) = 318, 5.0 40 0 (45)

2.2
_ 9%y
{pS,Pc’Qs,Qc} e Wp(a)[{Psol.oo’Qco} + {Pslpo-c'ch}v(e)] (46)

It follows from (33) and (45) that the solution of (43) and

(44) can be put in the form

Us = ozp(e)[Uso+Uslv(c)], etc. (47)

where UsO’ Usl""'vcl depend only on ¥y, o and wz.

In the case ¢ = 0, the solutions for the functions U(1),
S(t) and V(1) as given by (42) are exactly the approximate
steady state variances and covariance of the flapping response
obtained in [8] for low advance ratio flight and will be considered
known. Our concern here is with the effect of a finite spanwise
correlation length (e€>0) on these response statistics. This effect

is completely described by the two quantities p(e) and v(e).

- i wxm...J
s i i st : ) Vv )
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From the plot of v(e) in Figure ”, we see that this monotone de-
creasing function changes by less than 10% of its value at € = 0
as the correlation length shortens (from infinity) to a fraction of
the blade length. Therefore, the main effect of a spanwise load
correlation is in the amplitude factor p(e). As both p and v
decrease with increasing €, a correlation length shortening in the
low advance ratio range gives rise to a reduction in the time aver-
age of the meansquare flapping properties as well as in the fluctu-
ation about these average values.

Solutions for O(uz)—terms in (38) and (42) have also been ob-
tained. In the € = 0 case, these terms invcoclve the second harmonics
cos 21 and sin 2t. The effect of a finite spatial correlation
length on these O(uz)—terms is qualitatively similar to that on the
0(1) and O(u) terms. As such the explicit solutions for the O(uz)—

terms will not be given here.

6. Numerical Solution for Arbitrary Advance Ratio

g, : : : :
If u~ is not small compared to unity, the situation is much
more complicated since the effect of reverse flow is no longer

negligible. For u < 1, we have from (20)

Cn(T) (ZﬂﬂiTi(Z“+l)ﬂ)
clt) = 4 (48)
c, (1) + Fe—(3-4cos2t+cosdt) ((2m+l)w<rs(2m+2)n)
and
kn(T) (ZmHiTi(ZM+l)ﬂ)
k(1) = (49)

4
k (1) - Liz(2sin2t-sindt) ((2m#1) meeg (2me2)w)

Evidently, the effect of reverse flow is negligible in ¢ and k
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if u3 << 1. From (25), we get
roG<1) (2um<t< (2m+l)m,0<x<l)
Elx,7) = ‘-rn(XaI) ™ rg(x,'c) ((2a+1l) w<t<(2m+2) w,x<-psinT)
r GoT) + rg(x,r) ((2m+ 1) n<t<(2m+2) 7, %x>~psinT)
(50)
where
- - -t 3 .
rz(x,t) = ye 3{e etk A)[(2+2e+e')+e(l+£)u51nrl
-GC(X+“SlnT)(2-cusinr)} (51)
g sk = ve (e % (2-epsint) ~e~C FTHSINT) (54 1ising) )

With (50) and (51), it is not cdifficult to show that the effect
of reverse flow can be neglected in r(x,t) if u3 << 1 at
least for € << 1 and € >> 1.

For u > 1, the entire blade is subject to reverse flow in

the range -sint > % so that

clt) = -Cn(T), k(t) = —kn(r), E(x,t) = -rn(x,T) (52)
; 3w 37 = =1
for all 1t in the range 5 A5 B AE 3 5 + ¢ where V¥ = cos ~(1/u).

Having the expressions for ¢, k and f, we can now solve the
initial value problem, (23) and (24). numerically using a 4th
order Runge-Kutta scheme for x, say x0 = O,xl,xz,...,xm = 1. With
fj(xk) = f(xk,rj), the set of solutions {ﬁj(xk),aj(xk)} for a
fixed j 1is used in (21) to get P(Tj) and Q(Tj) with the
integrals evaluated by Simpson's rule. Once P(Tj) and Q(Tj)
are calculated, the initial value problem (26) and (27) is solved
numerically again by a 4th order Runge-Kutta scheme. Within the

stability boundariecs of the two. sets of equations, (23) and (27),




we get accurate steady state periodic solutions of the meansquare

blade flapping properties after four blade revolutions for the
realistic range of values of y (2<y<12). For a fixed set of

Ye Ue €, @ and mz, the entire solution process for P, Q, U, S
and V consumes about 50 seconds on a UNIVAC 1106 if 21 stations
along the blade span are used in the numerical evaluation of the
integrals on the right side of (21).

With Rs(xz,xl) = 02 (a constant), the class of random
functions characterized by (3) seems to adequately describe the
random inflow associated with atmospheric turbulence at altitude
higher than 300 ft. above terrain if the effect of the spatial
variation of the vertical turbulence component, cf the longitu-
dinal turbulence component itself and of the blade mgtion are
all neglected (see [4] and references therein). In that case,
we have o = 2uf/L where & 1is the blade length and L/2 1is the
scale length of the vertical turbulence component. L is about
400 ft. for an altitude of 300-700 ft. above terrain and is
several thousand feet for higher altitudes. From the expression
for o, we see that, at the low advance ratio range, the correla-
tion time is long compared to one blade revolution for existing
blades which range from 33 ft. to 100 ft. As such, the results
of section (5) for the low advance ratio range serve only to
indicate the qualitative effect of a spatially correlated inflow;
we are mainly interested in the case of high advance ratio flight.

The meansquare flapping response of the blade to a zero mean

A(x,T) with a correlation function given by (3) have been studied
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with the help of the numerical solution scheme outlined in this
section for a wide range of the blade and load paramenters.

The numerical solution shows that the perturbation solution of

section (5) (including O(uz)—terms) gives a very good approxima-
tion of the exact solution for u < 0.4. It also shows that the
effect of a finite € for all 0 < u < 1.6 is qualitatively
similar to that indicated by the perturbation solution. The
actual distributions of the steady state <¢2> and <$2> are
given in Figures (3), (4), (5) and (6) for u =1.6 and u = 1.2
and for the two extreme rotor disc sizes, & = 33% ft. and

£ = 100 ft, operating at 300 ft. - 700 ft. above terrain

(L = 400 ft.). We have taken w2 = 1 1in these examples since i

most existing blades are hinged at the blade root. We see that,

aside from an increase in the magnitude of the meansquare response,

an increase in u tends to shift the time when <¢2> and <$2>
attain their maximum values further toward the midway point and
the end of the backstroke, respectively.

Finally, we show in Tables 1 and 2 the effect of the Lock
number Y on the peak values of <¢2> and <$2>. We see in
particular that the amplitude growth with Yy is nonlinear and the

growth rate depends significantly on u but not at all on €.

7. Autocorrelation Functions

Having determined U, S and V, we can now calculate the

autocorrelation of the flapping angle ¢(t) which characterizes




the second order statistics of the flapping response. We begin
by multiplying (1) by w(x',71') and ensemble-averaging the result

to get

e i = : il '
B Yo|x+,151n'r|RT + L [R] y0|x+usan|A(x,T,x .T')  (53)

where R(x,T;x',7') = <w(x,T)w(x',1')> and
AMx,t:x',1') = <A(x,T)w(x',T1')>. Tou get the yet unknown load-
response correlation A, we multiply (4) through by wi(x',t"')

and ensemble average giving us |
A+ ah = Y2a <n(x,T)w(x',t')> =0 (1t > 1) (54)

where the right hand side vanishes for =t > t' by (5). At

T = 1', we have from the relevant definitions
A(x,t';x',1t') = p(x,x',1") (55)

It follows from (54), (55) and the assumption of rigid flapping

that
K, +ak =0 (v>1'), K(x,7';7') = p(x,7") (56) ;
|
where ]
E 1l
AMx,t;1') = 3 I XA(x,1;x',1t')dx" (57)
0

The solution of (56) is

Rix,1:1') = plx,1)e 27T (¢ > %) (58)
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Upon introducing the rigid flapping assumption into (53),

we get

-~

Rtr + c(r)fiT + [u2+k(r)]§ = K(T,T') (xr > ') (59)

where ﬁ(r;r') = <¢p(t)d(t')> and

At;1")

1
37, IO x|x+usint|A (x,1;1')dx

1
- -1 ! -
= 3y e & {r-t )I X |x+usint|p(x,1')dx

%‘Ye"’“'rl)ﬁ(r;r') (60)

with 5(1';1') = P(t'). Note that

R(r':1) = <?(1)> = u(t'), R_(1':1) = s(1') (61)

-~

R (t':t') = v(T') (62)

TT"

The two conditions in (6l1) serve as initial conditions for (59).
But even without solving the initial value problem (59) and (61)
explicitly for ﬁ(t;r'), the following informative observation
can be made. Since the effect of a spatial load correlation
appears only in E(T;T') which is a periodic function of =

and Tt' at steady state, the correlation time of the response
depends only on the parameters @ and Y and not on €. Within
the framework of rigid flapping, our particular type of spanwise
load correlation only modifies the amplitude of the autocorrela-

tion of the response.
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Table (1) Variation of Maximum <¢2(T)>/o2 with Lock Number

for <)(x,T)XA(x',T')> = Uzexp(—alr—tLL—s]x-x'l)

Y=2 Y=4 Y=8 Y=12
u=1.0 e=1.0 1.26 3.76 13.74 30.06
a=0.5 €=0. 1.58 4,71 17.26 37.15
pu=1.0 €=1.0 1.97 5.22 17.20 36.70
a=0.167 €=0. 2.44 6.53 21.61 46.07
u=1.6 €=1.0 2.30 9.58 61.29 183.30
a=0.8 e=0. 2.91 12.09 77.55 231.32
pu=1l.6 €e=1.0 3.17 13.40 85.92 251.25
a=0.267 e=0. 3.98 16.88 109.07 316.29

Table (2) Variation of !Maximum <52(I)>/02 with Lock Number

for <A(x,T)A(x',T")> = ozexp(-alr-r[i-e[x-x'[)

Y=2 Y=4 y=8 Y=12
u=1.0 €=1.0 1.03 2.91 10.54 23.05
a=0.5 €=0. 1.29 3.62 13.18 29.11
u=1.0 €=1.0 1.54 3.83 12.56 27.01
a=0.167 e=0. 1.89 4.72 13.59 33.99
u=1l.6 €=1.0 1.62 9.20 75.01 246.14
a=0.8 €=0. 2,05 11.72 95.34 312.56
u=l.6 €=1,0 2,08 12.77 103.90 331.84
a=0.267 €=0, 2,60 16.05 137.23 423,09
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